NONLINEARITY, NONLOCALITY AND ULTRAMETRICITY Branko Dragovich's 80th Birthday

Representations of the p-adic rotation group: towards p-adic qubits and quantum computing

Ilaria Svampa ilaria.svampa@unicam.it

In collaboration with S. L'Innocente, S. Mancini, A. Winter Paolo Aniello, Sara Di Martino, Vincenzo Parisi, Michele Pigliapochi

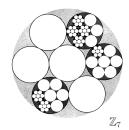
Outline

- Introduction
- 2 p-Adic rotation group $SO(3)_p$
- 4 Haar measure
- Representations
- p-Adic qubit and quantum computation
- Outlook

p-Adic numbers

p-Adic

- Field $\mathbb{Q}_p \ni x = \sum_{n \ge n_0} x_n p^n$, with $n_0 \in \mathbb{Z}$, $x_n \in \{0, 1, \dots, p-1\}$
- Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \text{ s.t. } n_0 \ge 0\}$, inverse limit $\mathbb{Z}_p \simeq \underline{\lim} \{\mathbb{Z}/p^k \mathbb{Z}\}_{\mathbb{N}}$
- \mathbb{Q}_p is totally disconnected



• The algebraic closure of \mathbb{Q}_p has infinite degree

Motivations

p-Adic

In physical observations, we deal with Q

- p-Adic quantum mechanics [1]
 - p-adic configuration space
 - symmetry group
 - projective unitary irreducible representations (irreps)

Symmetry group of rotations on \mathbb{Q}_n^3 Irreps for p-adic angular momentum and spin 2-dimensional irreps $\leftrightarrow p$ -adic qubit p-adically controlled quantum logic gates

Vladimirov, Volovich, Zelenov, p-Adic Analysis and Mathematical Physics, 1994. I. Svampa et al.

Quadratic forms on \mathbb{Q}_p^3

•
$$Q(x, y, z) = ax^2 + by^2 + cz^2 \doteq \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

- $SO(Q) = \{ L \in M(3, \mathbb{Q}_p) \text{ s.t. } L^\top QL = Q, \text{ det } L = 1 \}$
- $Q \sim Q^{\dagger} \implies \mathrm{SO}(Q) \simeq \mathrm{SO}(Q^{\prime})$

2 classes of quadratic forms on \mathbb{Q}_p^3 : (likewise \mathbb{R})

 Q_0 indefinite

₩

 $SO(Q_0)$ not compact

 Q_+ definite

 $SO(Q_+)$ compact

Special orthogonal group on \mathbb{Q}_p^3

Unique definite quadratic form on \mathbb{Q}_p^3 :

$$Q_{+}(x) = x^{2} - vy^{2} + pz^{2} = diag(1, -v, p)$$

where v is a non-square p-adic unit

Unique compact group

$$SO(3)_p := SO(Q_+)$$

Unique definite quadratic form on \mathbb{Q}_p^4 : $Q_+^{(4)}(\mathbf{x}) = x^2 - vy^2 + pz^2 - pvt^2$

No definite quadratic forms on \mathbb{Q}_n^n for $n \geq 5$

Basic facts about $SO(3)_p$ [2]

- $SO(3)_p \subset M(3, \mathbb{Z}_p)$ is compact
- ullet The elements of $\mathrm{SO}(3)_p$ are rotations around a fixed axis $\mathbb{Q}_p oldsymbol{n}$ of \mathbb{Q}_p^3
- The x-axis cannot be rotated to the z-axis
- There are three groups $\mathrm{SO}(2)_{p,\ell}$, parametrised as \mathcal{C}_ℓ or $P^1(\mathbb{Q}_p)$

W.r.t. an orthogonal basis $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{n})$ of \mathbb{Q}^3_p ,

$$\mathrm{SO}(3)_p \ni \mathcal{R}_{\boldsymbol{n}}(\sigma) = \begin{pmatrix} \frac{1 - \delta \sigma^2}{1 + \delta \sigma^2} & -\frac{2\delta \sigma}{1 + \delta \sigma^2} & 0\\ \frac{2\sigma}{1 + \delta \sigma^2} & \frac{1 - \delta \sigma^2}{1 + \delta \sigma^2} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{array}{l} \sigma \in \mathbb{Q}_p \cup \{\infty\}\\ \delta = Q_+(\boldsymbol{w})/Q_+(\boldsymbol{v}) \end{array}$$

2] Di Martino, Mancini, Pigliapochi, Svampa, Winter, "Geometry of the *p*-Adic Special Orthogonal Group SO(3)_p", Lobachevskii J. Math. 44(6), pp. 2135-2159 (2023).

Euler and nautical angles

Any $R \in SO(3)_{\mathbb{R}}$ can be written as any of the compositions $R_x R_y R_z$, $R_y R_z R_x$, $R_z R_x R_y$, $R_x R_z R_y$, $R_z R_y R_x$, $R_y R_x R_z$ $R_x R_y R_x$, $R_x R_z R_x$, $R_y R_x R_y$, $R_y R_z R_y$, $R_z R_x R_z$, $R_z R_y R_z$, respectively of certain angles $\theta, \psi, \phi \in \mathbb{R}$

Theorem

Any $\mathcal{R} \in SO(3)_p$, can be written as any of the compositions

$$\mathcal{R}_z \mathcal{R}_y \mathcal{R}_x$$
, $\mathcal{R}_z \mathcal{R}_x \mathcal{R}_y$, $\mathcal{R}_x \mathcal{R}_y \mathcal{R}_z$, $\mathcal{R}_y \mathcal{R}_x \mathcal{R}_z$,

respectively of certain parameters $\sigma, \tau, \omega \in \mathbb{Q}_p \cup \{\infty\}$

None of the other decompositions exist.

Each is exactly twofold, and unique if we restrict the parameters:

$$\mathcal{R} = \mathcal{R}_z(\omega)\mathcal{R}_y(\tau)\mathcal{R}_x(\sigma) = \mathcal{R}_z(\infty)\mathcal{R}_z(\omega)\mathcal{R}_y(\infty)\mathcal{R}_y(-\tau)\mathcal{R}_x(\infty)\mathcal{R}_x(\sigma)$$

Programme

To classify all projective irreps

$$U \colon \mathrm{SO}(3)_p \to \mathrm{PU}(\mathbb{C}^n) := \mathrm{U}(n)/\mathrm{U}(1).$$

There exists a unique Haar measure μ on the compact group $SO(3)_p$

• Regular representation of $SO(3)_p$ on $L^2(SO(3)_p, \mu)$

Peter-Weyl Theorem

The regular representation of $SO(3)_p$ is decomposable into a direct sum of all the irreps of $SO(3)_p$

Orthogonality relations between projective irreps

$1^{\mathsf{st}} \ \mathsf{approach}$

Haar measure on *p*-adic Lie groups [3]

Theorem

Let G be a p-adic Lie group, and let $\mathcal{A}=\{(U_{\alpha},\varphi_{\alpha})\}_{\alpha}$ be an atlas for G. If μ is the left Haar measure on G, then, for every Borel set $E\in\mathcal{B}_{G}$, and every $(U_{\alpha},\varphi_{\alpha})\in\mathcal{A}$,

$$\mu(E \cap U_{\alpha}) = \int_{\varphi_{\alpha}(E \cap U_{\alpha})} \left| \det \left[\frac{\partial \zeta_{\alpha,i}}{\partial x_{j}} \left(\varphi_{\alpha}^{-1}(\mathbf{y}); \varphi_{0}(e) \right) \right]_{i,j} \right|_{p}^{-1} d\lambda(\mathbf{y}), \quad (1)$$

where (U_0, φ_0) is a chart around $e \in G$, with local coordinates $(x_j)_j$, $\zeta_{\alpha,i}(\varphi_{\alpha}^{-1}(\mathbf{y}); \mathbf{x}) := \varphi_{\alpha,i}(\varphi_{\alpha}^{-1}(\mathbf{y})\varphi_0^{-1}(\mathbf{x}))$, and λ is the Haar measure on \mathbb{Q}_p^n .

[3] Aniello, L'Innocente, Mancini, Parisi, Svampa, Winter, "Invariant measures on *p*-adic Lie groups: the *p*-adic quaternion algebra and the Haar integral on the *p*-adic rotation groups", Lett. Math. Phys. **114**(78) (2024).

Haar integral on $SO(3)_p$

The *p*-adic quaternion algebra \mathbb{H}_p is the division algebra over \mathbb{Q}_p with basis $(1, \mathbf{i}, \mathbf{j}, \mathbf{k} := \mathbf{i}\mathbf{j})$ satisfying $\mathbf{i}^2 = v$, $\mathbf{j}^2 = -p$, $\mathbf{j}\mathbf{i} = -\mathbf{i}\mathbf{j}$.

$$\mathbb{H}_p \ni \xi = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}$$

- Haar measure on \mathbb{H}_p^{\times} : $\mu_{\mathbb{H}_p^{\times}}(E) = \int_{\varphi(E)} \frac{\mathrm{d}\lambda(\boldsymbol{q})}{|Q_+^{(4)}(\boldsymbol{q})|_p^2}$ where $\varphi(\xi) := \boldsymbol{q} = (q_0, q_1, q_2, q_3)$
- Isomorphism $SO(3)_p \simeq \mathbb{H}_p^{\times}/\mathbb{Q}_p^{\times}$
- Weil-Mackey-Bruhat lift

$$\int_{\mathrm{SO}(3)_{\rho}} \mathrm{d}\mu(\mathcal{R}) \phi(\mathcal{R}) = \int_{\mathbb{H}_{\rho}^{\times}} \mathrm{d}\mu_{\mathbb{H}_{\rho}^{\times}}(\boldsymbol{q}) \big(\mathscr{L}\phi \big)(\boldsymbol{q})$$

$2^{\mathsf{nd}} \ \mathsf{approach}$

$SO(3)_p \mod p^k$

- $SO(3)_p \subset M(3,\mathbb{Z}_p)$ is a profinite group
- Homomorphism for $k \in \mathbb{N}$:

$$\pi_k \colon \mathrm{SO}(3)_p \to \pi_k \left(\mathrm{SO}(3)_p \right) \subset \mathsf{M}(3, \, \mathbb{Z}/p^k \mathbb{Z})$$
 $\pi_k(\mathcal{R}) = \mathcal{R} \mod p^k \quad \text{entry-wise}$

• Finite groups $G_{p^k} := \pi_k (SO(3)_p)$

$$\ldots \longrightarrow G_{p^{k+1}} \stackrel{\text{mod } p^k}{\longrightarrow} G_{p^k} \longrightarrow \ldots \longrightarrow G_{p^2} \stackrel{\text{mod } p}{\longrightarrow} G_p$$

- $\bullet \ \mathrm{SO}(3)_p = \varprojlim \{G_{p^k}\}_{\mathbb{N}}$
- Nautical parameters and multivariable Hensel's lift

$$|G_{p^k}| = 2p^{3k-1}(p+1)$$

Inverse-limit Haar measure on $SO(3)_p$ [4]

Proposition

Let μ_k be the Haar measure on G_{p^k} , with μ_k, μ_l coherent for k < l. There exists a unique measure μ on $SO(3)_p$ coherent with each μ_k , and it is the Haar measure on $SO(3)_p$.

- Power set Σ_k of G_{p^k} Normalised counting measure $\mu_k(E_k) := \frac{|E_k|}{|G_{p^k}|}$
- $\Sigma_k^{\star} := \pi_k^{-1}(\Sigma_k)$ on $SO(3)_p$, with measure $\mu_k^{\star}(E) := (\mu_k \circ \pi_k)(E)$
- $A := \bigcup_{k \in \mathbb{N}} \Sigma_k^{\star}$ not a σ -algebra, $\widetilde{\mu}(E) := \mu_k^{\star}(E)$ for $E \in \Sigma_k^{\star}$, σ -additive
- $\Sigma(A) = \mathcal{B}_{SO(3)_p}$ with unique σ -additive extension of $\widetilde{\mu}$:

$$\mu(E) := \inf \left\{ \widetilde{\mu}(F) \text{ s.t. } E \subseteq F \in A \right\} = \inf_{k} \left\{ \widetilde{\mu} \left(\pi_{k}^{-1} (\pi_{k}(E)) \right) \right\}$$

[4] Aniello, L'Innocente, Mancini, Parisi, Svampa, Winter, "Characterising the Haar measure on the *p*-adic rotation groups via inverse limits of measure spaces", *Expo. Math.* 43(2) (2025)

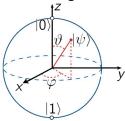
Representations of $SO(3)_p$

Euclidean scenario

$$SO(3)_{\mathbb{R}} \simeq SU(2)/\{\pm I\}$$

• (2l+1)-dim irreps indexed by integer or half-integer l

• The state space of the qubit is \mathbb{C}^2 Vector states on the Bloch sphere



- Action of SU(2) on \mathbb{C}^2 corresponds to projective action of $SO(3)_{\mathbb{R}}$ on the Bloch sphere
- p-Adic qubit as a projective irrep of $SO(3)_p$ on \mathbb{C}^2

Factorisation of irreps

• Irrep $U_{p,k}$ of $G_{p^k} \sim \text{irrep } U_p$ of $SO(3)_p$ $U_p := U_{p,k} \circ \pi_k$

Proposition

For every irrep U_p of $SO(3)_p$, there exists $k \in \mathbb{N}$, irrep $U_{p,k}$ of G_{p^k} , such that $U_p = U_{p,k} \circ \pi_k$.

$$SO(3)_{p} \xrightarrow{U_{p}} PU(\mathbb{C}^{n})$$

$$\downarrow^{\pi_{k}} \qquad \qquad \downarrow^{U_{p,k}}$$

$$G_{p^{k}}$$

- Exhaustive method
- Start from k=1

[5]

From rotations to dihedral groups

•
$$G_p \ni M(a,b,c,d,s) = \begin{pmatrix} a & svb & 0 \\ b & sa & 0 \\ c & d & s \end{pmatrix}$$
, $a^2 - vb^2 \equiv 1$, $s \equiv \pm 1 \mod p$

• Homomorphism
$$\mathcal{F}_p \colon G_p \twoheadrightarrow \mathcal{F}_p(G_p), \begin{pmatrix} a & svb & 0 \\ b & sa & 0 \\ c & d & s \end{pmatrix} \mapsto \begin{pmatrix} a & svb \\ b & sa \end{pmatrix}$$

•
$$\mathcal{F}_p(G_p) = \left\langle C := \begin{pmatrix} a_0 & vb_0 \\ b_0 & a_0 \end{pmatrix}, \ Z := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

s.t. $C^{p+1} \equiv Z^2 \equiv I_2, ZCZ \equiv C^{-1} \right\rangle$
 $\simeq D_{p+1}$

Onto homomorphism $\phi_p \colon G_p \to D_{p+1}$

[5] Svampa, Mancini, Winter, "An approach to p-adic qubits from irreducible representations of SO(3)_p", J. Math. Phys. **63**(7), 2022.

Some *p*-adic qubit representations

 D_{p+1} has:

four 1-dim irreps

$$\frac{p-1}{2}$$
 2-dim irreps $\sigma_p^{(i)}$

many p-adic qubits for p > 3

p-Adic qubit representations:

$$U_p^{(i)} \colon \mathrm{SO}(3)_p \to \mathrm{U}(2), \quad U_p^{(i)} \coloneqq \sigma_p^{(i)} \circ \phi_p \circ \pi_1$$

$$U_{p}^{(i)} := \sigma_{p}^{(i)} \circ \phi_{p} \circ \pi_{1}$$

p = 3 explicitly: four other 4-dim irreps

p-Adic quantum computing [6]

- The p-adic qubit is the fundamental object
- ullet Its pure states are on \mathbb{C}^2
- Composite systems of qubits via tensor-product representations
- Clebsch-Gordan decomposition

```
Standard QM Unique 2-dim irrep U U^{\otimes n} \leadsto \text{all irreps}
```

p-Adic QM

More 2-dim irreps

$$U_p = U_{p,k} \circ \pi_k \Rightarrow U_p^{\otimes n} = U_{p,k}^{\otimes n} \circ \pi_k$$

^[6] L'Innocente, Mancini, Svampa, Winter, "Putting together p-adic qubits: from representations of $SO(3)_p$ to entanglement and logic gates", in preparation.

p-Adic quantum computing [6]

Clebsch-Gordan decomposition

Standard QM

 $2\otimes 2\simeq 1\oplus 3$

p-Adic QM

For the 2-dim irreps of D_{p+1} :

$$2\otimes 2 \simeq 1 \oplus 1 \oplus 1 \oplus 1$$

$$2\otimes 2 \simeq 1 \oplus 1 \oplus 2$$

$$2\otimes 2\simeq 2\oplus 2$$

Entanglement

Singlet
$$|\Psi^{-}\rangle$$

Triplet $(|00\rangle, |\Psi^{+}\rangle, |11\rangle)$

Singlets or doublets

$$|\Phi^{\pm}
angle$$
, $|\Psi^{\pm}
angle$

where $|\Phi^{\pm}\rangle:=\frac{1}{\sqrt{2}}(|00\rangle\pm|11\rangle)$ and $|\Psi^{\pm}\rangle:=\frac{1}{\sqrt{2}}(|01\rangle\pm|10\rangle)$ are the four maximally entangled Bell states

[6] L'Innocente, Mancini, Svampa, Winter, "Putting together p-adic qubits: from representations of $SO(3)_p$ to entanglement and logic gates", in preparation p = p = p = p

p-Adically controlled logic gates

- Entangling two-qubit gate?
- GAP for G₃
- Character table

G ₃	I	C_2	<i>C</i> ₃	C ₄	C_5	C_6	C ₇	C ₈	C ₉
χτειν	1	1	1	1	1	1	1	1	1
χ _{1,1D}	1	1	1	1	1	-1	-1	-1	-1
χ2,1D	1	1	1	1	-1	1	1	-1	-1
χ3,1D	1	1	1	1	-1	-1	-1	1	1
X2D	2	2	2	-2	0	0	0	0	0
χ1,4D	4	1	-2	0	0	-2	1	0	0
χ2,4D	4	1	-2	0	0	2	-1	0	0
χ3,4D	4	-2	1	0	0	0	0	-2	1
χ4,4D	4	-2	1	0	0	0	0	2	-1

Explicit 4-dim irreps

ic SO(3)_p Haar measure Irreps QC **Outlook**

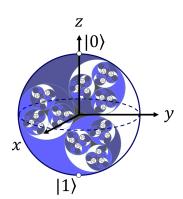
Conclusions

- There is a unique group $SO(3)_p$. We studied its geometric and topological properties: rotations, nautical decompositions, inverse limit, quaternions, Hensel's lift.
- We expressed the Haar measure on $SO(3)_p$ through two different approaches: integral and inverse limit.
- We studied the irreps of $SO(3)_p$. They all factorise modulo p^k for some k. We found explicit p-adic qubit representations for every prime p.
- We laid the foundations of a p-adic theory of angular momentum and spin, as well as of p-adically controlled quantum computation

Open questions

- p = 2 is always peculiar
- Structure of $SO(2)_{p,d}$
- Haar measure in terms of nautical parameters
- Number of 1-dim irreps $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \subseteq SO(3)_p/[SO(3)_p, SO(3)_p]$ Number of 2-dim irreps \leftrightarrow p-adic qubits
- Irreps of $SO(3)_p \mod p^k$
- Universal set of p-adically controlled gates

THANK YOU!



Parametrisation of $SO(2)_{p,d}$

$$SO(2)_{p,d} \ni \mathcal{R}_{d}(\sigma) = \begin{pmatrix} \frac{1-d\sigma^{2}}{1+d\sigma^{2}} & -\frac{2d\sigma}{1+d\sigma^{2}} \\ \frac{2\sigma}{1+d\sigma^{2}} & \frac{1-d\sigma^{2}}{1+d\sigma^{2}} \end{pmatrix}, \qquad \sigma \in \mathbb{Q}_{p} \cup \{\infty\}$$
$$\mathcal{R}_{d}\left(-\frac{1}{d\sigma}\right) = -\mathcal{R}_{d}\left(\sigma\right)$$

Either $\sigma \in \mathbb{Z}_p$ or $\sigma = -\frac{1}{4\pi}$ with

• $\tau \in p\mathbb{Z}_p$ for $\ell = -v$:

$$SO(2)_{p,-\nu} = \{\mathcal{R}_{-\nu}(\sigma) \text{ s.t. } \sigma \in \mathbb{Z}_p\} \cup \{-\mathcal{R}_{-\nu}(\sigma) \text{ s.t. } \sigma \in p\mathbb{Z}_p\}$$

• $\tau \in \mathbb{Z}_p$ for $\ell \in \{p, up\}$:

$$SO(2)_{p,d} = \{ \pm \mathcal{R}_d(\sigma) \text{ s.t. } \sigma \in \mathbb{Z}_p \}$$

Proof of main-angle decompositions

$$\mathcal{R} = \mathcal{R}_{\mathbf{n}_1}(\sigma)\mathcal{R}_{\mathbf{n}_2}(\tau)\mathcal{R}_{\mathbf{n}_3}(\omega) \quad \text{iff} \quad \mathcal{R}_{\mathbf{n}_2}(\tau)^{-1}\mathcal{R}_{\mathbf{n}_1}(\sigma)^{-1}\mathcal{R}_{\mathbf{n}_3} = \mathbf{n}_3 \\ \quad \text{iff there exists } \mathcal{R}_{\mathbf{n}_1}(\sigma) \in \mathrm{SO}(3)_p \text{ s.t.}$$

$$\mathcal{R}_{\boldsymbol{n}_1}(\sigma)^{-1}\mathcal{R}\boldsymbol{n}_3 \perp \boldsymbol{n}_2 \tag{2}$$

$$Q_{+}(\mathcal{R}_{\boldsymbol{n}_{1}}(\sigma)^{-1}\mathcal{R}\boldsymbol{n}_{3}) = Q_{+}(\boldsymbol{n}_{3})$$
(3)

- E.g. $(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) = (\mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1)$ Is there $x_1 \in \mathbb{Q}_p$ such that $x_1^2 + px_2^2 = 1$ where $x_2 \in \mathbb{Z}_p$? By Hensel's Lemma
- Non-existence with counterexamples on Eqs. (2), (3)
- Duplicity due to $\mathcal{R}_x(\infty)\mathcal{R}_y(\infty)\mathcal{R}_z(\infty)=I_3$ and solutions of one quadratic equation in one unknown

Construction of Haar measure on p-adic Lie groups

- *p*-adic Lie group *G*, disjoint atlas $\mathcal{A} = \{U_{\alpha}, \varphi_{\alpha}\}_{\alpha}$
- Radon measure ν on G by $\nu_{\alpha} := \varphi_{\alpha}^{-1} * (\lambda_{|\varphi_{\alpha}(U_{\alpha})})$
- $\nu^h(E) := \nu(hE)$, for a Borel set E and $h \in G$
- ν quasi-left-invariant $\Rightarrow d\nu^h(g) = \eta(h,g)d\nu(g)$ with

$$\eta(h,g) = \left| \det \left(rac{\partial \zeta_{eta,i}}{\partial x_j} (h; oldsymbol{x} = arphi_lpha(g))
ight)_{i,j}
ight|_{oldsymbol{p}},$$

$$\zeta_{\beta,i}(h;\mathbf{x}) := \varphi_{\beta,i}(h\varphi_{\alpha}^{-1}(\mathbf{x}))$$

left Haar measure

$$\mathrm{d}\mu(g) := \eta(g,e)^{-1} \mathrm{d}\nu(g)$$

Haar integrals on $SO(2)_{p,d}$, $SO(4)_p$

• On $\mathrm{SO}(2)_{p,d}$, with $arphi_d^{-1}(\sigma) := \mathcal{R}_d(\sigma)$,

$$\mu(E) = \int_{\varphi_{\delta}(E)} \frac{1}{|1 + \ell \sigma^{2}|_{p}} d\lambda(\sigma)$$

- $\mathrm{SO}(4)_\mathrm{p} \simeq \mathbb{P}(\mathbb{H}_\rho^\times)/\mathbb{Q}_\rho^\times$, where $\mathbb{P}(\mathbb{H}_\rho^\times) := \{(\xi, \rho) \in \mathbb{H}_\rho^\times \times \mathbb{H}_\rho^\times \text{ s.t. } \mathrm{nrd}(\xi) = \mathrm{nrd}(\rho)\}$
- ullet Haar measure on a neighbourhood of the identity of $\mathbb{P}(\mathbb{H}_p^{ imes})$
- Haar integral on a neighbourhood of the identity of $SO(4)_p$ via Weil-Mackey-Bruhat lift

Multivariable Hensel lift for $SO(3)_p$

$$\widetilde{G}_{p^k} := \left\{ \widetilde{L} \in \mathsf{M}\left(3, \mathbb{Z}/p^k \mathbb{Z}
ight) \; ext{s.t.} \; \widetilde{L}^ op \pi_k \left(A_+
ight) \widetilde{L} = \pi_k \left(A_+
ight), \; \det \widetilde{L} \equiv 1
ight\}$$
 $G_{p^k} \subseteq \widetilde{G}_{p^k}$

Is the converse true?

Theorem

If $L = (\ell_{ij})_{i,j} \in M(3, \mathbb{Z}_p)$ is a solution modulo p^k , there exists $Z = (z_{ij})_{i,j} \in M(3, \mathbb{Z}_p)$ such that $L + p^k Z$ is solution modulo p^{k+1} , for every $k \in \mathbb{N}$.

Any solution L modulo p^k admits exactly p^3 distinct lifted solutions

Any solution L modulo p^k admits exactly p^3 distinct lifted solutions $L + p^k Z$ modulo p^{k+1} .

Proof of factorisation of irreps modulo p^k

- G profinite, representation $\rho: G \to \mathrm{GL}(n,\mathbb{C})$
- ρ continuous iff ker(ρ) open no small subgroups for $GL(n, \mathbb{C})$
- factorisation of ρ , $\ker(\pi_k) \subseteq \ker(\rho)$
- extend to projective representations $U: G \to PU(n)$ \underline{U} induces $\rho: G \to \mathrm{U}(\mathsf{M}(n,\mathbb{C})), \ \rho(g)M := U(g)MU(g)^\dagger$ $ker(\rho) = ker(U)$

